Heterogeneity in susceptible-infected-removed (SIR) epidemics on lattices.
نویسندگان
چکیده
The percolation paradigm is widely used in spatially explicit epidemic models where disease spreads between neighbouring hosts. It has been successful in identifying epidemic thresholds for invasion, separating non-invasive regimes, where the disease never invades the system, from invasive regimes where the probability of invasion is positive. However, its power is mainly limited to homogeneous systems. When heterogeneity (environmental stochasticity) is introduced, the value of the epidemic threshold is, in general, not predictable without numerical simulations. Here, we analyse the role of heterogeneity in a stochastic susceptible-infected-removed epidemic model on a two-dimensional lattice. In the homogeneous case, equivalent to bond percolation, the probability of invasion is controlled by a single parameter, the transmissibility of the pathogen between neighbouring hosts. In the heterogeneous model, the transmissibility becomes a random variable drawn from a probability distribution. We investigate how heterogeneity in transmissibility influences the value of the invasion threshold, and find that the resilience of the system to invasion can be suitably described by two control parameters, the mean and variance of the transmissibility. We analyse a two-dimensional phase diagram, where the threshold is represented by a phase boundary separating an invasive regime in the high-mean, low-variance region from a non-invasive regime in the low-mean, high-variance region of the parameter space. We thus show that the percolation paradigm can be extended to the heterogeneous case. Our results have practical implications for the analysis of disease control strategies in realistic heterogeneous epidemic systems.
منابع مشابه
Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated.
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-...
متن کاملIndividual-based lattice model for spatial spread of epidemics
We present a lattice gas cellular automaton (LGCA) to study spatial and temporal dynamics of an epidemic of SIR (susceptible-infected-removed) type. The automaton is fully discrete, i.e. space, time and number of individuals are discrete variables. The automaton can be applied to study spread of epidemics in both human and animal populations. We investigate effects of spatial inhomogeneities in...
متن کاملA stochastic modelling approach to describing the dynamics of an experimental furunculosis epidemic in Chinook salmon, Oncorhynchus tshawytscha (Walbaum).
A susceptible-infected-removed (SIR) stochastic model was compared to a susceptible-latent-infectious-removed (SLIR) stochastic model in terms of describing and capturing the variation observed in replicated experimental furunculosis epidemics, caused by Aeromonas salmonicida. The epidemics had been created by releasing a single infectious fish into a group of susceptible fish (n = 43) and prog...
متن کاملEffects of local and global network connectivity on synergistic epidemics.
Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected ne...
متن کاملOptimal Design of Experimental Epidemics
We consider the optimal design of experimental epidemics modelled as density dependent Markov processes. We focus on finding (i) the optimal times at which to collect data about the state of the system for a small number of discrete observations, (ii) the optimal numbers of susceptible and infective individuals to begin an experiment with, and (iii) the optimal number of replicate epidemics to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 8 55 شماره
صفحات -
تاریخ انتشار 2011